In its parallel pursuit of an increased competitivity for design offices and more pleasurable and easier workflows for designers, artificial design intelligence is a technical, intellectual, and political challenge. While human-machine cooperation has become commonplace through Computer Aided Design (CAD) tools, a more improved collaboration and better support appear possible only through an endeavor into a kind of artificial design intelligence, which is more sensitive to the human perception of affairs.
Considered as part of the broader Computational Design studies, the research program of this quest can be called Artificial / Autonomous / Automated Design (AD). The current available level of Artificial Intelligence (AI) for design is limited and a viable aim for current AD would be to develop design assistants that are capable of producing drafts for various design tasks. Thus, the overall aim of this thesis is the development of approaches, techniques, and tools towards artificial design assistants that offer a capability for generating drafts for sub-tasks within design processes. The main technology explored for this aim is Evolutionary Computation (EC), and the target design domain is architecture. The two connected research questions of the study concern, first, the investigation of the ways to develop an architectural design assistant, and secondly, the utilization of EC for the development of such assistants.
While developing approaches, techniques, and computational tools for such an assistant, the study also carries out a broad theoretical investigation into the main problems, challenges, and requirements towards such assistants on a rather overall level. Therefore, the research is shaped as a parallel investigation of three main threads interwoven along several levels, moving from a more general level to specific applications. The three research threads comprise, first, theoretical discussions and speculations with regard to both existing literature and the proposals and applications of the thesis; secondly, proposals for descriptive and prescriptive models, mappings, summary illustrations, task structures, decomposition schemes, and integratory frameworks; and finally, experimental applications of these proposals. This tripartite progression allows an evaluation of each proposal both conceptually and practically; thereby, enabling a progressive improvement of the understanding regarding the research question, while producing concrete outputs on the way. Besides theoretical and interpretative examinations, the thesis investigates its subject through a set of practical and speculative proposals, which function as both research instruments and the outputs of the study.